Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.872
Filtrar
1.
Microb Pathog ; 190: 106638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574829

RESUMO

Autophagy plays an important role in the lifecycle of viruses. However, there is currently a lack of systematic research on the relationship between Infectious Bronchitis Virus (IBV) and autophagy. This study aims to investigate the impact of IBV on autophagy and the role of autophagy in viral replication. We observed that IBV infection increased the expression of microtubule-associated protein 1 light chain 3, a marker of autophagy, decreased the expression of sequestosome 1, and led to elevated intracellular LC3 puncta levels. These findings suggest that IBV infection activates the autophagic process in cells. To investigate the impact of autophagy on the replication of IBV, we utilized rapamycin as an autophagy activator and 3-methyladenine as an autophagy inhibitor. Our results indicate that IBV promotes viral replication by inducing autophagy. Further investigation revealed that IBV induces autophagosome formation by inhibiting the mTOR-ULK1 pathway and activating the activity of vacuolar protein sorting 34 (VPS34), autophagy-related gene 14, and the Beclin-1 complex. VPS34 plays a crucial role in this process, as inhibiting VPS34 protein activity enhances cell proliferation after IBV infection. Additionally, inhibiting VPS34 significantly improves the survival rate of IBV-infected chicks, suppresses IBV replication in the kidney, and alleviates tracheal, lung, and kidney damage caused by IBV infection. In summary, IBV infection can induce autophagy by modulating the mTOR/ULK1 signaling pathway and activating the VPS34 complex, while autophagy serves to promote virus replication.


Assuntos
Autofagia , Galinhas , Classe III de Fosfatidilinositol 3-Quinases , Vírus da Bronquite Infecciosa , Replicação Viral , Vírus da Bronquite Infecciosa/fisiologia , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Galinhas/virologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Sirolimo/farmacologia , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Linhagem Celular , Doenças das Aves Domésticas/virologia , Autofagossomos/metabolismo , Autofagossomos/virologia , Chlorocebus aethiops , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética
2.
Open Vet J ; 14(1): 90-107, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633144

RESUMO

Background: Being a ubiquitous, highly contagious virus with a continuous mutation and a large number of evolutions worldwide, the infectious bronchitis virus (IBV) continues to wreak problems among Egyptian chickens and generate economic losses. The commonly applied IBV vaccination protocols in broilers include alternatives to classic and/or variant attenuated live virus vaccines. Aim: The current study targeted to assess the protective efficacy of concurrent and successive Ma5 and 4/91 vaccine strain regimens against the field variant II IBV strain (IBV-EGY-ZU/Ck-127/2021) in chickens. Methods: Commercial broiler chickens were vaccinated with Ma5 and 4/91 strains simultaneously at 1 and 14 days of age. The evaluation parameters included clinical protection and humoral and early innate immunity aspects in the renal tissues of vaccinated and infected birds. Results: The vaccine regimen ameliorated the clinical and histopathological lesions against variant II IBV and enhanced body gain as well as succeeded in preventing tracheal shedding and minimizing cloacal shedding of the field virus. The IL-1ß mRNA gene expression was evident as early as 24 hours, with highly significant upregulation at 48 hours post vaccination and 24 hours post challenge (PC) in vaccinated birds. Remarkable upregulation was observed in oligoadenylate synthetases (OAS) expression 48 hours PC in vaccinated and unvaccinated infected birds. The vaccinated birds developed a significant antibody titer of 704.0 ± 111.98 at 28 days of age, with a consistent antibody titer increase after the challenge. Conclusion: Overall, a combination of heterologous protectotype commercial vaccines achieved good protection against the Egyptian variant II IBV strain. This vaccine program could be an effective protocol against the threat posed by IBV viruses circulating in the Egyptian field.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Egito , Infecções por Coronavirus/veterinária , Vacinas Virais/genética
3.
Res Vet Sci ; 171: 105201, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442531

RESUMO

Infectious bronchitis virus (IBV) is a contagious coronavirus causing respiratory and urogenital disease in chickens and is responsible for significant economic losses for both the broiler and table egg layer industries. Despite IBV being regularly monitored using standard epidemiologic surveillance practices, knowledge and evidence of risk factors associated with IBV transmission remain limited. The study objective was to compare risk factor modeling outcomes between a traditional stepwise variable selection approach and a machine learning-based random forest Boruta algorithm using routinely collected IBV antibody titer data from broiler flocks. IBV antibody sampling events (n = 1111) from 166 broiler sites between 2016 and 2021 were accessed. Ninety-two geospatial-related and poultry-density variables were obtained using a geographic information system and data sets from publicly available sources. Seventeen and 27 candidate variables were screened to potentially have an association with elevated IBV antibody titers according to the manual selection and machine learning algorithm, respectively. Selected variables from both methods were further investigated by construction of multivariable generalized mixed logistic regression models. Six variables were shortlisted by both screening methods, which included year, distance to urban areas, main roads, landcover, density of layer sites and year, however, final models for both approaches only shared year as an important predictor. Despite limited significance of clinical outcomes, this work showcases the potential of a novel explorative modeling approach in combination with often unutilized resources such as publicly available geospatial data, surveillance health data and machine learning as potential supplementary tools to investigate risk factors related to infectious diseases.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , Doenças das Aves Domésticas/prevenção & controle , Aves Domésticas , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Algoritmos
4.
Viruses ; 16(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543846

RESUMO

The GI-19 lineage of infectious bronchitis virus (IBV) has emerged as one of the most impactful, particularly in the "Old World". Originating in China several decades ago, it has consistently spread and evolved, often forming independent clades in various areas and countries, each with distinct production systems and control strategies. This study leverages this scenario to explore how different environments may influence virus evolution. Through the analysis of the complete S1 sequence, four datasets were identified, comprising strains of monophyletic clades circulating in different continents or countries (e.g., Asia vs. Europe and China vs. Thailand), indicative of single introduction events and independent evolution. The population dynamics and evolutionary rate variation over time, as well as the presence and intensity of selective pressures, were estimated and compared across these datasets. Since the lineage origin (approximately in the mid-20th century), a more persistent and stable viral population was estimated in Asia and China, while in Europe and Thailand, a sharp increase following the introduction (i.e., 2005 and 2007, respectively) of GI-19 was observed, succeeded by a rapid decline. Although a greater number of sites on the S1 subunit were under diversifying selection in the Asian and Chinese datasets, more focused and stronger pressures were evident in both the European (positions 2, 52, 54, 222, and 379 and Thai (i.e., positions 10, 12, 32, 56, 62, 64, 65, 78, 95, 96, 119, 128, 140, 182, 292, 304, 320, and 323) strains, likely reflecting a more intense and uniform application of vaccines in these regions. This evidence, along with the analysis of control strategies implemented in different areas, suggests a strong link between effective, systematic vaccine implementation and infection control. However, while the overall evolutionary rate was estimated at approximately 10-3 to 10-4, a significant inverse correlation was found between viral population size and the rate of viral evolution over time. Therefore, despite the stronger selective pressure imposed by vaccination, effectively constraining the former through adequate control strategies can efficiently prevent viral evolution and the emergence of vaccine-escaping variants.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Vírus da Bronquite Infecciosa/genética , Filogenia , Tailândia/epidemiologia
5.
Viruses ; 16(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543692

RESUMO

Infectious bronchitis virus (IBV) induces severe economic losses in chicken farms due to the emergence of new variants leading to vaccine breaks. The studied IBV strains belong to Massachusetts (Mass), Canadian 4/91, and California (Cal) 1737 genotypes that are prevalent globally. This study was designed to compare the impact of these three IBV genotypes on primary and secondary lymphoid organs. For this purpose, one-week-old specific pathogen-free chickens were inoculated with Mass, Canadian 4/91, or Cal 1737 IBV variants, keeping a mock-infected control. We examined the IBV replication in primary and secondary lymphoid organs. The molecular, histopathological, and immunohistochemical examinations revealed significant differences in lesion scores and viral distribution in these immune organs. In addition, we observed B-cell depletion in the bursa of Fabricius and the spleen with a significant elevation of T cells in these organs. Further studies are required to determine the functional consequences of IBV replication in lymphoid organs.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Canadá , Galinhas , Vírus da Bronquite Infecciosa/genética , California , Genótipo , Massachusetts
6.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396786

RESUMO

An increasing amount of evidence indicates that Baicalin (Bai, a natural glycosyloxyflavone compound) exhibits an antiviral effect against avian viruses. However, it remains unclear if the antiviral effect of Bai against infectious bronchitis virus (IBV) is exerted indirectly by modulating respiratory tract microbiota and/or their metabolites. In this study, we investigated the protection efficacy of Bai in protecting cell cultures and broilers from IBV infection and assessed modulation of respiratory tract microbiota and metabolites during infection. Bai was administered orally to broilers by being mixed in with drinking water for seven days. Ultimately, broilers were challenged with live IBV. The results showed that Bai treatment reduced respiratory tract symptoms, improved weight gain, slowed histopathological damage, reduced virus loads and decreased pro-inflammation cytokines production. Western blot analysis demonstrated that Bai treatment significantly inhibited Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and nuclear factor kappa-B (NF-κB) expression both in cell culture and cells of the trachea. Bai treatment reversed respiratory tract microbiota dysbiosis, as shown by 16S rDNA sequencing in the group of broilers inoculated with IBV. Indeed, we observed a decrease in Proteobacteria abundance and an increase in Firmicutes abundance. Metabolomics results suggest that the pentose phosphate pathway, amino acid and nicotinamide metabolism are linked to the protection conferred by Bai against IBV infection. In conclusion, these results indicated that further assessment of anti-IBV strategies based on Bai would likely result in the development of antiviral molecule(s) which can be administered by being mixed with feed or water.


Assuntos
Infecções por Coronavirus , Flavonoides , Gammacoronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , Traqueia , Antivirais/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia
7.
Front Cell Infect Microbiol ; 14: 1325346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375362

RESUMO

Infectious bronchitis virus (IBV) is a positive-sense, single-stranded, enveloped RNA virus responsible for substantial economic losses to the poultry industry worldwide by causing a highly contagious respiratory disease. The virus can spread quickly through contact, contaminated equipment, aerosols, and personal-to-person contact. We highlight the prevalence and geographic distribution of all nine genotypes, as well as the relevant symptoms and economic impact, by extensively analyzing the current literature. Moreover, phylogenetic analysis was performed using Molecular Evolutionary Genetics Analysis (MEGA-6), which provided insights into the global molecular diversity and evolution of IBV strains. This review highlights that IBV genotype I (GI) is prevalent worldwide because sporadic cases have been found on many continents. Conversely, GII was identified as a European strain that subsequently dispersed throughout Europe and South America. GIII and GV are predominant in Australia, with very few reports from Asia. GIV, GVIII, and GIX originate from North America. GIV was found to circulate in Asia, and GVII was identified in Europe and China. Geographically, the GVI-1 lineage is thought to be restricted to Asia. This review highlights that IBV still often arises in commercial chicken flocks despite immunization and biosecurity measures because of the ongoing introduction of novel IBV variants and inadequate cross-protection provided by the presently available vaccines. Consequently, IB consistently jeopardizes the ability of the poultry industry to grow and prosper. Identifying these domains will aid in discerning the pathogenicity and prevalence of IBV genotypes, potentially enhancing disease prevention and management tactics.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Humanos , Vírus da Bronquite Infecciosa/genética , Filogenia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Doenças das Aves Domésticas/epidemiologia , Galinhas , Aves Domésticas
8.
Vet Microbiol ; 290: 110010, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306768

RESUMO

To investigate the critical role of the S gene in determining pathogenesis of TW-like avian infectious bronchitis virus (IBV), we generated two recombinant IBVs (rGDaGD-S1 and rGDaGD-S2) by replacing either the S1 or S2 region of GD strain with the corresponding regions from an attenuated vaccine candidate aGD strain. The virulence and pathogenicity of these recombinant viruses was assessed both in vitro and in vivo. Our results indicated the mutations in the S2 region led to decreased virulence, as evidenced by reduced virus replication in embryonated chicken eggs and chicken embryonic kidney cells as well as observed clinical symptoms, gross lesions, microscopic lesions, tracheal ciliary activity, and viral distribution in SPF chickens challenged with recombinant IBVs. These findings highlight that the S2 subunit is a key determinant of TW-like IBV pathogenicity. Our study established a foundation for future investigations into the molecular mechanisms underlying IBV virulence.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Embrião de Galinha , Animais , Galinhas , Infecções por Coronavirus/veterinária , Glicoproteína da Espícula de Coronavírus/genética , Oligopeptídeos
9.
Vet Med Sci ; 10(2): e1390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419286

RESUMO

BACKGROUND: Effect of antibacterials on mucociliary system and clinical outcome of chickens with mixed viral respiratory conditions is not properly addressed. OBJECTIVE: We evaluated enrofloxacin effects on clinical parameters and mucociliary system of broilers challenged with H9N2/IB viruses. METHODS: Broilers (105), at the age of 25 days, were randomly allocated into three groups: Group 1 (negative control), no treatment; Group 2 (positive control [PC]) challenged by intranasal and intraocular route. Group 3 (antibiotic [AB]-treated) challenged and also received enrofloxacin started after manifestation of clinical signs (day 2 post-challenge [pc]) and continued for 5 days. RESULTS: Administration of AB was not associated with appreciable changes in body weight, feed conversion ratio (FCR) or the severity of clinical signs although it slightly reduced mortality rate as compared to PC group (p > 0.05). Virus shedding period and number of virus positive tracheal and caecal tonsil samples were also statistically similar between PC and AB groups. In necropsy, the most profound effect of AB was decreased pleuropneumonia severity score on day 12 pc. Histopathological lesion scores were statistically the same between PC and AB groups. However, the administration of AB increased the number of tracheal goblet cells, with no effect on ciliostasis. CONCLUSIONS: We found a weak positive effect of enrofloxacin administration in H9N2/IB-infected chickens. Considering the risks of AB treatment in broiler chickens, the results of this small-scale study do not encourage the benefit of enrofloxacin use in these viral diseases.


Assuntos
Vírus da Bronquite Infecciosa , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Influenza Aviária/tratamento farmacológico , Enrofloxacina , Antibacterianos/uso terapêutico
10.
Microbiol Spectr ; 12(3): e0240223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38299864

RESUMO

Infectious bronchitis virus (IBV), the causative agent of infectious bronchitis, is responsible for major economic losses in the poultry industry worldwide. While IBVs can usually be passaged in primary chicken embryonic fibroblasts (CEFs), most of the wild ones cannot adapt to passaged cell lines. In this study, the wild strain CK/CH/MY/2020 was used to infect primary CEF and immortalize DF-1 CEF cells. Results indicated that IBV was able to cause lesions and pass onto CEF, but not DF-1. Indeed, the virus could enter DF-1 cells and synthesize the associated structural gene but could not assemble into complete viral particles for release. Furthermore, transcriptome sequencing analysis showed significant differences in gene expression between CEF and DF-1 cells after viral infection, although the corresponding antiviral responses could be activated in both cell types. The biggest difference was in terms of the amino acid biosynthesis pathway and the cytokine receptor interaction pathway, which were significantly and specifically activated in CEF. This could actually explain why intact viruses can be assembled but not in DF-1. In addition, SLBP and P2RX7 affect the replication of IBV's structural genes to some extent. Overall, IBV can enter CEF and DF-1 cells, but the complex intracellular cytokine interactions affect the assembly and release of viral particles. The insight will be useful for the study of IBV through in vitro transmission and pathogenesis. IMPORTANCE: Infectious bronchitis virus (IBV) is responsible for high morbidity and mortality as well as substantial economic losses worldwide. Transcriptome sequencing of IBV-infected chicken embryonic fibroblast and DF-1 cells revealed that the virus elicits antiviral immunity in cells after viral infection, but IBV cannot activate DF-1 cells to produce sufficient amounts of viral structures to assemble into complete virions, which may be caused by the interactions between cytokines. The study of IBV cellular adaptations is important for vaccine development and investigation of the pathogenesis of IBV.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Viroses , Embrião de Galinha , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Infecções por Coronavirus/veterinária , Citocinas/metabolismo , Fibroblastos/metabolismo
11.
Infect Genet Evol ; 118: 105565, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309607

RESUMO

Infectious bronchitis virus (IBV), an avian coronavirus, has caused considerable damage to the poultry industry. In Korea, indigenous KM91-like and newly introduced QX-like lineages belonging to the GI-19 lineage have been prevalent despite constant vaccination. In this study, complete genome sequences of 23 IBV isolates in Korea from 2010 to 2020 were obtained using next-generation sequencing, and their phylogenetic relationship and recombination events were analyzed. Phylogenetic analysis based on the S1 gene showed that all isolates belonged to the GI-19 lineage and were divided into five subgroups (KM91-like, K40/09-like, and QX-like II to IV). Among the 23 isolates, 14 recombinants were found, including frequent recombination between KM91-like and QX-like strains. In addition, it was observed that other lineages, such as GI-1, GI-13, and GI-16, were involved in recombination. Most recombination breakpoints were detected in the ORF1ab gene, particularly nsp3. However, when considering the size of each genome, recombination occurred more frequently in the 3a, E and 5a genes. Taken together, genetic recombination frequently occurred throughout the entire genome between various IBV strains in Korea, including live attenuated vaccine strain. Our study suggests the necessity of further research on the contribution of recombination of genomes outside the spike region to the biological characteristics of IBV.


Assuntos
Gammacoronavirus , Vírus da Bronquite Infecciosa , Filogenia , República da Coreia/epidemiologia , Vírus da Bronquite Infecciosa/genética , Vacinas Atenuadas , Recombinação Genética
12.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189432

RESUMO

Infectious bronchitis virus (IBV) is a significant respiratory pathogen that affects chickens worldwide. As an avian coronavirus, IBV leads to productive infection in chicken macrophages. However, the effects of IBV infection in macrophages on cyclooxygenase-2 (COX-2) expression are still to be elucidated. Therefore, we investigated the role of IBV infection on the production of COX-2, an enzyme involved in the synthesis of prostaglandin E2 (PGE2) in chicken macrophages. The chicken macrophage cells were infected with two IBV strains, and the cells and culture supernatants were harvested at predetermined time points to measure intracellular and extracellular IBV infection. IBV infection was quantified as has been the COX-2 and PGE2 productions. We found that IBV infection enhances COX-2 production at both mRNA and protein levels in chicken macrophages. When a selective COX-2 antagonist was used to reduce the COX-2 expression in macrophages, we observed that IBV replication decreased. When IBV-infected macrophages were treated with PGE2 receptor (EP2 and EP4) inhibitors, IBV replication was reduced. Upon utilizing a selective COX-2 antagonist to diminish PGE2 expression in macrophages, a discernible decrease in IBV replication was observed. Treatment of IBV-infected macrophages with a PGE2 receptor (EP2) inhibitor resulted in a reduction in IBV replication, whereas the introduction of exogenous PGE2 heightened viral replication. Additionally, pretreatment with a Janus-kinase two antagonist attenuated the inhibitory effect of recombinant chicken interferon (IFN)-γ on viral replication. The evaluation of immune mediators, such as inducible nitric oxide (NO) synthase (iNOS), NO, and interleukin (IL)-6, revealed enhanced expression following IBV infection of macrophages. In response to the inhibition of COX-2 and PGE2 receptors, we observed a reduction in the expressions of iNOS and IL-6 in macrophages, correlating with reduced IBV infection. Overall, IBV infection increased COX-2 and PGE2 production in addition to iNOS, NO, and IL-6 expression in chicken macrophages in a time-dependent manner. Inhibition of the COX-2/PGE2 pathway may lead to increased macrophage defence mechanisms against IBV infection, resulting in a reduction in viral replication and iNOS and IL-6 expressions. Understanding the molecular mechanisms underlying these processes may shed light on potential antiviral targets for controlling IBV infection.


Assuntos
Dinoprostona , Vírus da Bronquite Infecciosa , Animais , Ciclo-Oxigenase 2/genética , Interleucina-6/genética , Galinhas
13.
Br Poult Sci ; 65(2): 119-128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38166582

RESUMO

1. Infectious bronchitis virus (IBV), a gamma-coronavirus, can infect chickens of all ages and leads to an acute contact respiratory infection. This study evaluated the anti-viral activity of palmatine, a natural non-flavonoid alkaloid, against IBV in chicken embryo kidney (CEK) cells.2. The half toxic concentration (CC50) of palmatine was 672.92 µM, the half inhibitory concentration (IC50) of palmatine against IBV was 7.76 µM and the selection index (SI) was 86.74.3. Mode of action assay showed that palmatine was able to directly inactivate IBV and inhibited the adsorption, penetration and intracellular replication of IBV.4. Palmatine significantly upregulated TRAF6, TAB1 and IKK-ß compared with the IBV-infected group, leading to the increased expressions of pro-inflammatory cytokines IL-1ß and TNF-α in the downstream NF-κB signalling pathway.5. Palmatine significantly up-regulated the levels of MDA5, MAVS, IRF7, IFN-α and IFN-ß in the IRF7 pathway, inducing type I interferon production. It up-regulated the expression of 2'5'-oligoadenylate synthase (OAS) in the JAK-STAT pathway.6. IBV infection induced cell apoptosis and palmatine-treatment delayed the process of apoptosis by regulation of the expression of apoptosis-related genes (BAX, BCL-2, CASPASE-3 and CASPASE-8).7. Palmatine could exert anti-IBV activity through regulation of NF-κB/IRF7/JAK-STAT signalling pathways and apoptosis, providing a theoretical basis for the utilisation of palmatine to treat IBV infection.


Assuntos
Alcaloides de Berberina , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Galinhas/metabolismo , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Vírus da Bronquite Infecciosa/genética , Transdução de Sinais , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Janus Quinases/uso terapêutico , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Fatores de Transcrição STAT/uso terapêutico , Apoptose , Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária
14.
Virus Genes ; 60(1): 44-52, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185717

RESUMO

Infectious bronchitis virus (IBV) causes considerable economic impacts on global poultry production. Since its emergence in early 1930, IBV continues to evolve and now exists in a wide range of antigenically and genetically distinct variants, that makes the prevention and the control of the disease both complex and challenging. Although IBV has been reported regularly from different corner of India, information about the molecular epidemiology of circulating strain in relation to clinical form of the disease is not available. We have studied the clinico-pathology and confirmed eight distinct field outbreaks of the disease from poultry population of Mizoram, India. The clinical disease in affected birds resulted sever pathological lesions involving respiratory, gastrointestinal, and urinary system together. The complete S1 nucleotide sequences and protein analyses have revealed a distinct variant of genotype I-IBV (GI), designated as GI-24 circulating in India. The S1 protein of the field strains displayed unique additional eighteen amino acids at C terminal end when compared with M41strain. Comparison of the S1 protein among all the 27 lineages of GI revealed five mutations that are exclusive to only the Indian strains. All the field strains have also possessed the amino acid mutations at highly variable region 2 (HVR2) of S1 receptor-binding domain (RBD) that are considered characteristic of nephropathogenic strains. The circulating GI-24 strains displayed potency for a wide range of tropism from respiratory epithelium to GIT and urinary system. This study provides insight on recently emerging IBV outbreaks in NER, India, which might be causing huge economic losses to the poultry farmers in the region.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Aves Domésticas , Genótipo , Surtos de Doenças/veterinária , Filogenia
15.
PLoS One ; 19(1): e0297516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265985

RESUMO

The avian Gammacoronavirus infectious bronchitis virus (IBV) causes major economic losses in the poultry industry as the aetiological agent of infectious bronchitis, a highly contagious respiratory disease in chickens. IBV causes major economic losses to poultry industries across the globe and is a concern for global food security. IBV vaccines are currently produced by serial passage, typically 80 to 100 times in chicken embryonated eggs (CEE) to achieve attenuation by unknown molecular mechanisms. Vaccines produced in this manner present a risk of reversion as often few consensus level changes are acquired. The process of serial passage is cumbersome, time consuming, solely dependent on the supply of CEE and does not allow for rapid vaccine development in response to newly emerging IBV strains. Both alternative rational attenuation and cell culture-based propagation methods would therefore be highly beneficial. The majority of IBV strains are however unable to be propagated in cell culture proving a significant barrier to the development of cell-based vaccines. In this study we demonstrate the incorporation of a heterologous Spike (S) gene derived from the apathogenic Beaudette strain of IBV into a pathogenic M41 genomic backbone generated a recombinant IBV denoted M41K-Beau(S) that exhibits Beaudette's unique ability to replicate in Vero cells, a cell line licenced for vaccine production. The rIBV M41K-Beau(S) additionally exhibited an attenuated in vivo phenotype which was not the consequence of the presence of a large heterologous gene demonstrating that the Beaudette S not only offers a method for virus propagation in cell culture but also a mechanism for rational attenuation. Although historical research suggested that Beaudette, and by extension the Beaudette S protein was poorly immunogenic, vaccination of chickens with M41K-Beau(S) induced a complete cross protective immune response in terms of clinical disease and tracheal ciliary activity against challenge with a virulent IBV, M41-CK, belonging to the same serogroup as Beaudette. This implies that the amino acid sequence differences between the Beaudette and M41 S proteins have not distorted important protective epitopes. The Beaudette S protein therefore offers a significant avenue for vaccine development, with the advantage of a propagation platform less reliant on CEE.


Assuntos
Gammacoronavirus , Vírus da Bronquite Infecciosa , Vacinas , Animais , Chlorocebus aethiops , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Galinhas , Vírus da Bronquite Infecciosa/genética
16.
Biomolecules ; 14(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275762

RESUMO

Infectious bronchitis (IB) is a highly infectious viral disease of chickens which causes significant economic losses in the poultry industry worldwide. An effective vaccine against IB is urgently needed to provide both biosafety and high-efficiency immune protection. In this study, the S1 protein of the infectious bronchitis virus was delivered by a recombinant attenuated Salmonella typhimurium vector to form the vaccine candidate χ11246(pYA4545-S1). S. typhimurium χ11246 carried a sifA- mutation with regulated delayed systems, striking a balance between host safety and immunogenicity. Here, we demonstrated that S1 protein is highly expressed in HD11 cells. Immunization with χ11246(pYA4545-S1) induced the production of antibody and cytokine, leading to an effective immune response against IB. Oral immunization with χ11246(pYA4545-S1) provided 72%, 56%, and 56% protection in the lacrimal gland, trachea, and cloaca against infectious bronchitis virus infection, respectively. Furthermore, it significantly reduced histopathological lesions in chickens. Together, this study provides a new idea for the prevention of IB.


Assuntos
Vírus da Bronquite Infecciosa , Vacinas Virais , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Salmonella typhimurium/genética , Imunização
17.
Poult Sci ; 103(1): 103236, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980750

RESUMO

Infectious bronchitis virus (IBV) is prevalent in Pakistan causing enormous economic losses. To date no clear data are available on circulating genotypes and phylogeographic spread of the virus. Hence current study assessed these parameters for all available IBV Pakistani isolates, based on the 9 new sequences, with respect to other Asian and non-Asian countries. Results indicated that all Pakistani isolates belonged to genotype I (GI), with more than half of them (16/27) belonging to the GI-24 lineage, against which no vaccine is available. Three possible introduction events of the GI-13 IBV lineage into Pakistan, based on the estimated IBV population using isolates from this study, were observed possibly from Afghanistan, China, and/or Egypt. These events were further analyzed on the S1 amino acid level which showed unique alterations (S250H, T270K, and Q298S) in 1 isolate (IBV4, GI-13) when compared to GI-1 lineage. Both GI-1 and GI-13 Pakistani strains showed close homology with homologous vaccine strains that are used in Pakistan. For GI-24 strains, none of the used vaccines showed substantial homology, necessitating the need for further exploration of this lineage and vaccine design. In addition, our findings highlight the importance of genomic surveillance to support phylogeographical studies on IBV in genotyping and molecular epidemiology.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas , Animais , Filogeografia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Paquistão/epidemiologia , Genótipo , Filogenia , Galinhas , Doenças das Aves Domésticas/epidemiologia
18.
Int J Biol Macromol ; 255: 128105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981286

RESUMO

Infectious bronchitis (IB) is an acute and highly contagious disease caused by avian infectious bronchitis virus (IBV), resulting in significant economic losses in the global poultry industry. In this study, we utilized a replication-incompetent adenovirus vector derived from chimpanzees for the first time to express the S gene of IBV. The adenovirus was successfully rescued and demonstrated convenient production, good growth performance, and stability on HEK293 A cells. Morphologically, the recombinant adenovirus (named PAD-S) appeared normal under transmission electron microscopy, and efficient expression of the exogenous gene was confirmed through immunofluorescence analysis and immunoblotting. Administration of PAD-S via ocular and nasal routes induced a strong immune response in the chicken population, as evidenced by specific antibody and cytokine measurements. PAD-S was unable to replicate within chickens and showed low pre-existing immunity, demonstrating high safety and environmental friendliness. The robust immune response triggered by PAD-S immunization effectively suppressed viral replication in various tissues, alleviating clinical symptoms and tissue damage, thus providing complete protection against viral challenges in the chicken population. In conclusion, this study successfully developed an IBV candidate vaccine strain that possesses biosafety, high protective efficacy, and ease of production.


Assuntos
Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Humanos , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Pan troglodytes , Glicoproteína da Espícula de Coronavírus/genética , Adenoviridae , Células HEK293 , Vacinas Virais/genética , Proteínas Recombinantes
19.
Poult Sci ; 103(1): 103259, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992619

RESUMO

The gamma coronavirus infectious bronchitis virus (IBV) is known to cause an acute and highly contagious infectious disease in poultry. Here, this study aimed to investigate the impact of virulent or avirulent IBV infection on the avian host by conducting proteomics with data-independent acquisition mass spectrometry (DIA-MS) in the kidneys of IBV-infected chickens. The results revealed 267, 489, and 510 differentially expressed proteins (DEPs) in the chicken kidneys at 3, 5, and 7 days postinfection (dpi), respectively, when infected with the GD17/04 strain, which is a highly nephrogenic strain and belongs to the 4/91 genotype. In contrast, the attenuated 4/91 vaccine resulted in the identification of 144, 175, and 258 DEPs at 3, 5, and 7 dpi, respectively. Functional enrichment analyses indicated distinct expression profiles between the 2 IBV strains. Upon GD17/04 infection, metabolic pathways respond initially in the early stage (3 dpi) and immune-related signaling pathways respond in the middle and late stages (5 and 7 dpi). The 4/91 vaccine elicited a completely opposite response compared to the GD17/04 infection. Among all DEPs, 62 immune-related DEPs were focused on and found to be mainly enriched in the type I interferon (IFN-I) signaling pathway and involved in humoral and cellular immunity. Notably, key molecules in the IFN-I signaling pathway including MDA5, LGP2, and TBK1 may serve as regulatory targets of IBV. Overall, this study highlights similarities and discrepancies in the patterns of protein expression at different stages of infection with virulent and avirulent IBV strains, with the IFN-I signaling pathway emerging as a critical response to IBV infection.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas , Vacinas Virais , Animais , Galinhas , Proteômica , Rim/metabolismo , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Doenças das Aves Domésticas/prevenção & controle
20.
J Virol Methods ; 324: 114859, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061673

RESUMO

The quantitative polymerase chain reaction (qPCR) technique is an extensively used molecular tool for the detection and quantification of viral genome load. However, since the qPCR assay is a relative quantification method that relies on an external calibration curve it has a lower assay precision and sensitivity. The digital PCR (dPCR) technique is a good alternative to the qPCR assay as it offers highly precise and direct quantification of viral genome load in samples. In this study, performance characteristics such as the quantification range, sensitivity, precision, and specificity of the dPCR technique was compared to qPCR technique for the detection and quantification of IBV genome loads in serial dilutions of IBV positive plasmid DNA, and IBV infected chicken tissue and swab samples. The quantification range of the qPCR assay was wider than that of the dPCR assay, however dPCR had a higher sensitivity compared to qPCR. The precision of quantification of DNA in plasmid samples in terms of repeatability and reproducibility of results was higher when using the dPCR assay compared to qPCR assay. The quantification results of IBV genome load in infected samples by the qPCR and dPCR assays displayed a high correlation. Hence, our findings suggest that dPCR could be used in avian virology research for improved precision and sensitivity in detection and quantification of viral genome loads.


Assuntos
Vírus da Bronquite Infecciosa , Animais , Vírus da Bronquite Infecciosa/genética , Reprodutibilidade dos Testes , DNA , Galinhas , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...